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Hele-Shaw flow with suction for an incompressible fluid in a porous medium is introduced 
as a nontrivial model problem for two-dimensional transient free boundary problems. In this 
model an initially smooth free boundary can move with unbounded velocities and develop 
cusps. Two analytic solutions are worked out for a special geometry with which numerical 
results can be compared. It is then shown that the method of lines can reasonably well 
reproduce the analytic solutions, although at the expense of long computer times. Some 
strategies for improving the efftciency of the method of lines, including a multi-grid method, 
are described. 

1. INTRODUCTION 

In past years a number of methods have been proposed for the numerical solution 
of Stefan and related free interface and boundary problems. Depending on the model 
equations such methods can be based on an enthalpy formulation, on variational 
inequalities, or on front tracking [I 11. Numerical experiments with all these methods 
invariably show good agreement with closed-form solutions where available, or with 
equivalent computations based on alternate methods. While the last word on the 
efficient computation of Stefan problems may not have been spoken it is clear that 
any one particular problem of this type can be considered solvable with current 
numerical methods. 

There are, however, practical free boundary problems which formally show much 
the same structure as Stefan problems but for which the performance of numerical 
methods is not routinely predictable. For example, the classical Muskat problem in 
porous medium flow with an unfavorable mobility ratio leads to viscous fingering 
which is difficult to simulate numerically [lo]. Similarly, dendritic growth on the 
solidification front of a molten solid cannot yet be adequately modelled numerically 
[3]. It is our aim here to examine the performance of front tracking based on a 
method-of-lines discretization for the numerical solution of Hele-Shaw flow in a 
porous medium. Although this problem does not appear as difficult as the Muskat or 
dendrite problem it does show several complicating features absent in the Stefan 
problem, notably rapid free surface movement and the development of nonsmooth 
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free boundaries. We shall demonstrate that the time-irn~~i~~t method-of-~~~~s 
approach, which was presented in [8] as a general purpose a~goritbm for free 
boundary problems, does a creditable job (within limits) of solving Hele-Shaw flow. 
In addition, we show that a multi-grid algorithm for the method-of-~~~es a 
imation provides a modest acceleration of the SQR iteration employed in [g] 
computer run times depend heavily on the number of lines in the discretization: an 
decrease in run times allows more lines and thus a better numerical resolution: whit 
is essential for problems with irregular boundaries. Last but not least, we expand the 
comments of [9] and present an essentially analytic solution of a two dimensional 
transient problem with a cusping free boundary with which our numerical results can 
be compared. Since Hele-Shaw flow still presents sizable problems this s~~~t~~~ may 
serve as a benchmark against which other numerical methods yet to be developed or 
examined can also be compared. 

2, THE MODEL 

The equations for Hele-Shaw flow can be written as 

Au=O, (Y, 8) E -qt), t > 0, (2.1 a) 

u = 0, 

Vu=&!- 
dt ’ 

(2. ic) 

(2.16) 

Here u denotes the fluid pressure in an incompressible fluid in a reservoir D(l) 
between the inner well boundary i3D l(t), usually taken as the circle r = y0 j and the 
moving free outer boundary aD,(t) which is identified with the zero isobar (u = 0). 
The second free boundary condition 

determines the moverment of the position vector R(t) from the reservoir center at 
I’ = 0 to any point of the free boundary. It is Darcy’s law for flow in a porous 
medium in which L describes the fluid and reservoir properties. Finally, the initial 
reservoir D(0) is assumed given, 

In (9j the expression 

vu. vu-Lzl,=Q, (r, 0) E a-w), (2.2) 
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is given instead of (2.ld). If the solution u of (2.1) is sufficiently smooth then it 
necessarily satisfies (2.2) because it follows from 

that du/dt = u, dr/dt + u, de/dt + z+ z 0. Substitution of (2. Id) for dr/dt and d8/dt 
yields (2.2). We prefer to work here with (2.ld) because the absence of z+ in the 
equations somewhat simplifies the numerical method. 

In the above model the well iB,(t) is usually interpreted as an approximation to a 
point source or sink. Thus we think of (2. lb) as 

~(~~,B,t)=Klnr,, r,< 1. (2.3) 

If K < 0 then the model describes a reservoir into which fluid is injected. If the fluid 
were slightly compressible then (2.la) would have to be replaced by du - c+ = 0 and 
the resulting problem is identical to the usual one phase Stefan problem. Therefore, 
the Hele-Shaw injection problem is not considered challenging. On the other hand, if 
we choose K > 0 then fluid is extracted and we speak of Hele-Shaw flow with 
suction. For a slightly compressible fluid Hele-Shaw flow with suction would be 
equivalent to a Stefan problem with negative latent heat. We also note that the 
suction problem is identical with the electrodeposition problem where a cathode is 
plated with a metal during electrolysis. The injection problem is equivalent to elec- 
trochemical machining, where the anode is eroded during electrolysis [7]. 

Hele-Shaw flow with injection, electrochemical machining, and the one-phase 
Stefan problem have been studied extensively (see [5, 4, 61, resp.). The key tool has 
been the conversion of the free boundary problem into a variational inequality for an 
associated dependent variable. For example, in the injection problem it follows from 
the maximum principle that ]/Vu]] # 0 and u1 > 0 on 3D,(t). Hence the free boundary 
u = 0 can be expressed as t = s(x), the domain D(t) is growing and t ( s(x) for any x 
outside a&(t). We can set u z 0 outside D(t) and formally introduce 

w(x, t) = j; u(x, r) dr, O<t<T, xEfi, (2.4) 

where T is an arbitrary but fixed final time, and where fi is a bounded smooth 
domain which contains D(T) and which has the same well boundary r = Ye. A 
straightforward calculation (see 141) shows that w satisfies the free boundary problem 

Aw = -L, x E D(t) - D(O), 

= 0, x E D(0); 

w(r, , 8, t) = Kt In r0 > 0, 

w = awpn = 0, x E al,(t). 

(2.5) 
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It follows from ]6, pa 1501 that any sufficiently smooth solution of the variational 
inequality 

j 
B 

VW . V(?J - w) dx > j f(x)(v - w) dx, w, u E Iti, (26) 
5 

is necessarily a solution of (2.5). Here 

f(x) = L x @ D(O), 

= 0, x E D(Q), 

and IK = {a: 21 E H’(B); ZJ > 0; v(rO, 0, t) = Kt In r0 ; 2; = 0 on the outer boundary of 
fi}. The existence of a unique solution of (2.6) can be asserted, a convergent 
numerical scheme to compute w, and the equivalence of w and u can be esta~~~s~ed 
[4]. From a practical point of view it is especially of use to note that for any time t 
the variational inequality (2.6) can be solved without regard to the history of the 
problem in the interval (0, t). The free boundary at time t is simply the set 
Jx:w(x, t) = 0). 

In the suction problem the free boundary can again be expressed as t = s(x), 
now the domain is contracting and t > s(x) for any x outside 2,,(t). In this case the 
transformation (2.4) is no longer useful because w on aD,(t) will depend on 2D2(t). A 
formal conversion into a variational inequality can be carried out with the transfor- 
mation 

w(x, t) = JT u(x, z) dz, 
2 

where as before u = 0 outside 2D,(t). However, this transformation is only 
meaningful if aD,(T) is known which amounts to a replacement of the initial value 
problem (2.1) by a final value problem which is equivalent to the injection problem. 
However, aD,(r) is not known, and in fact, not meaningful if the problem has only a 
local solution. Thus, at this time, the question of existence and uniqueness of a 
solution for (2.1) for all but a few special geometries must be assumed on physical 
grounds. 

For comparison with numerical results two essentially analytic solutions of (2.1) 
are available. The first of these holds for the one-dimensional problem where &D( 
is a circle around the well, say r = R. It is straightforward to verify that the solution 
of (2.1) is given by 

where the free boundary r = s(t) is determined from 

au K In Y,, 
5 r=s=- s(ln s - In ro) 

=-Lds 
dt ’ 

(2.7) 

(2.8) 
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Integration shows that s(t) must be a root of the equation 

2 

F(s) = (K In yO) t - L f 
[ 
In s - In r0 - +- 1 

+L$ 
[ 
lnR--lnr,-+- =O. 

I 

We see that F’(S) = -Ls[ln s - In r,,] < 0 and F”(s) = -L(l + In S/T,,) < 0 on [r,,, R]. 
Hence the root r = s(t) can always be found with Newton’s method. For this reason 
(2.7) may be considered a given function for any value of t. We observe from (2.8) 
that ds/dt + -co as s + r,,. (We remark that Ids/dt 1 < co in the constant-flow-rate 
problem, where (2.1 b) is replaced by au/& = constant on r = r,, .) 

The second analytic solution applies to a truly two dimensional problem and can 
be derived following the ideas of [9]. Thus, let us suppose that D(t) is a domain in 
the complex z plane, which is the image of the unit circle 1 w / = 1 in the complex w 
plane under the conformal transformation z = u,(t) w + a,(t) w2. In general D(t) will 
be a limacon. The solution of Laplace’s equation in D(t) and vanishing on aD,(t) is 
given by 

u(x, y, t) = Re #(z, t) = Re K In w, (2.9) 

where 4 is an analytic function. The task is to determine a, and a2 such that Darcy’s 
law holds on the free boundary. We use the expression (2.2) and recall that 
vu * vu = Iaqyazl’ and +//a~ = (~~/&v)(~w/&). It follows that 

I 89 K 
az’ w(u, + 2a,w) ; 

furthermore, ut = Re(@/&v)(aw/8t) = Re(-K/w(a, + 2u,w))(ai(t) w + u;(t) w2). 
Substitution into (2.2) and simplification results in 

K=L ~~~u,~2+-$~u2~2+Rew(E,u~+2~lu2) . 
I 

This condition will hold everywhere on i?D,(t), i.e., when (WI = 1, provided the last 
term vanishes. This is achieved if we set uyuZ = 1. Integration now shows that a, and 
a2 must be chosen such that 

(u,[2+2juz(2=--2(K/L)t+C. (2.10) 

C is an arbitrary constant at our disposal. For the numerical work below we shall 
choose K = L = 1 and replace -2t + C by -r where r is increasing. If we set a, =p 
then (2.10) can be rewritten as the cubic equation 

2p3 + 2p7 + 1 = 0, 
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which for r < r, = -(17/16)‘13 z -1.19055 1 has three real roots. e shalt choose the 
root 

where w is determined from 

cos y = -3 fi/4 j/qp. 

The image of the unit circle in the w plane becomes the contour 

We note that 1.zj2 = l/p +p2 + 2 fi cosp so that the free boundary at time z < z, is 
a limaqon with minimum distance to the origin when /I = 71, i.e., when y = 
Moreover, this boundary is smooth for t < t, ; in fact for r < -13 the free boundary 
encloses a convex domain and looks almost circular. At r = -1.4 the domain no 
longer is convex. As r increases the indentation on y = G becomes more ~ro~o~~~~d~ 
and at f= r, the point (x, 0) has become the vertex of a cusp. Since this cusp defines 
a reentrant corner for D(r,) the gradient and hence the radial speed of the free 
boundary are unbounded. Thus in Hele-Shaw flow with suction an i~itiai~~ §rn~~~~ 

FIG. 1. Computed and exact free boundaries for Run I. For I = -1.3 and ~=-I.25 the compnted 
and correct free boundaries are indistinguishable. For t = -1.2 oscillations are beginning to appear near 
6, = T. The innermost free boundary is aD,(r,) with a cusp at 6 = z. 
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free boundary can evolve in finite time into a nonsmooth boundary moving with 
infinite speed. No equivalent behavior occurs in the classical Stefan problem. A plot 
of aD,(r,) is shown in Fig. 1. 

We remark that in this problem the point sink at the well is taken in the w plane. 
The condition on the actual well boundary r = r0 is determined from the conformal 
transformation. A slight dependence of u(T~, 6’, t) on 19 and t is observed. 

3. THE NUMERICAL METHOD 

The method-of-lines-SOR algorithm described in detail in [8] will be applied to the 
above Hele-Shaw flow model. For completeness, and to illustrate the changes made 
for this problem, we shall summarize the method. 

The numerical method tracks the free boundary in time on specified rays coming 
from the origin. It applies directly to Eqs. (2.1) except that (2.ld) is replaced by 

Lg=- (If (ys)‘)$ 
where Y = ~(8, t) is the equation of the free boundary and as/i% is the speed of a 
boundary point on the ray 0 = constant. [Equation (3.1) is easily derived from 
r(t) = s(B(t), t), u(r(@, t), 8, t) = 0, and (2. Id).] For the Stefan problems in [S] an 
implicit Euler method in time proved adequate. For the Hele-Shaw suction problem a 
Crank-Nicolson time discretization is necessary to correctly track the boundary in 
time. The method of lines with discrete 0 and t and continuous r based on a central 
difference quotient in 19 then leads to the following multi-point system at time t = t, 

(3.2a) 

ui(rO) =ftei7 tn>3 (3.2b) 

Ui(Si) = 0, (3.2~) 

(3.2d) 

for i = O,..., N and ei = 8, + (i/N)(S,,, - 8,). All quantities involving the subscripts -1 
and N + 1 are determined either by symmetry or periodicity. For example, if 8 = 6, is 
a symmetry boundary then U-, = U, and s-r = si . The subscript (i, y1- 1) denotes 
the dependent variable on the ray B = Bi at the preceding time level t,- i = t, - At. 
The values of {si,,}y’“=, are given, while {z+,}~=~ is taken to be the solution of 
(3.2a-c) (i.e., the approximate solution to Au = 0 with u = 0 on the given boundary 
80, (0)). 
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As in [S] the above multi-point free boundary problem is solved sequentially with 
a line SOR method. Starting with the solution at the preceding time level as an initial 
guess {zky} and {SF) we find an intermediate solution (z&, A$} in iteration k fso 
scalar two point free boundary problem obtained from (3.2) after the substitution 

ui+ 1 
k-1 

+uiti? si+ 1 
c Sk-’ 

,--I 3 

ui-l +u:-,, si-i +s:pl. 

The new iterate ZAP is then determined as 

for some suitable w. 
For the scalar problem we find the invariant imbedding approach convenient 

because the free boundary is easy to determine. The equations are developed in [S] 
and will be only listed here. We define zli = ii; and employ the Riccati transformation 

where 
R(ro) = 0 

The free boundary s: is found as the largest root on [yO, si,+ 1] of 

+ 1 + SitI,n-l -Si-l,n-l 

i ! Si,n ~ IA0 
(3.3) 

Finally, we find vi and hence zZi by integrating 

1 
‘ l + r”i- (rA~j2 2 [R(r) ui + w;(r)] = - 

If necessary, functions are extended quadratically beyond sf . 
The numerical solution of these equations is carried out as fobllows. For the Riccati 

equation the analytic solution 

rAB 
R(r) = - 

&i 
tanh s In L 

A@ ro 
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is used. The linear equation for M$ is solved with the trapezoidal rule on a fixed 
r-grid which is common to all rays to allow easy communication from one ray to 
the next. As wf becomes available the value of #:(I) is determined. If 4: changes sign 
between the mesh points rm and rm + I in a neighborhood of s+-, then the root s: is 
determined as the zero of the quadratic interpolant to #F(r) through &(rmP1), #~(Y,J, 
and &(r,+ J. The integration of ui again is carried out with the trapezoidal rule. If 
necessary, linear interpolation is used to determine vi at r = s:. 

As observed in [8] the choice of Ar for the trapezoidal rule is constrained. To 
avoid artificial oscillations in the integration of w: and 0: we require that 

Ar=rm+l - rm < ri AB’/R(r,) N fir,,, AC? 

This condition, as well as the rapid change of R(r) near r,, introduces a numerical 
boundary layer which requires a fine grid near ro. One advantage of this approach is 
the flexibility in treating problems with a great variety of boundary conditions. For 
example, the injection problem is solved with these same equations provided t is 
decreasing rather than increasing. The dominant drawback of this method for multi- 
dimensional problems is the slow convergence of the SOR iteration as the number of 
rays increases. For this reason a small number of lines have generally been used 
before. However, for Hele-Shaw flow with suction a fairly fine angular resolution 
seems mandatory to trace the cusping surface. Three modifications of the basis 
research code of [8] were examined as a means of speeding up convergence. 

The simplest improvement is an adaptive estimation of the relaxation parameter o 
from one time step to the next based on the assumption that the optimum cc) is nearly 
independent of time. We begin by choosing reasonable values LO,, and o, for the 
computation of the initial guess {u~,~} and the solution {ui,,} at time t = t,. At t = t, 
we choose w2 = w1 rt (wi - w,,) where + is choosen if the number of iteration I, at t, 
is less than the number I,, at t,. In general, given In-*, I,- i, and 1, with the 
corresponding values w,-~, w,-i, w, we set w,+i =o, -t (o,--c~((),-i) if I(w) is 
monotone for n - 2, IZ - 1, n. If I(w) is not monotone then we set o,+ i = 
w, - (mu, - 0+,)/2. (As expected, only relative minima were observed when I(w) 
was not monotone). This simple updating of o appears to work very well. 

Since the rate of convergence depends on the number of lines one can reduce the 
need for a large number of rays by using a fourth order quotient 

uee z & [-Ui-z + 16Ui_ 1 - 3OUi + 16Ui+ g- ui+z]* 

Together with the updating algorithm for IX this change improves the accuracy of the 
computed solution.We note that for this approximation small changes in the coef- 
ficients and source terms of the invariant imbeding equations become necessary. For 
example, in the Riccati equation the quantity fi must be replaced by dm. 

The third, and most promising improvement of the code of [8] is the coupling of a 
multi-grid algorithm (see, e.g. [2]) with the method of lines. Use of a multi-grid 
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technique seems reasonable because during the SO iteration we observe the usual 
behavior of initially fast convergence of {u:} and (3:) with k, follower by 
increasingly smaller changes from one iteration to the next. Based on the observation 
that most time of the computation is spent on solving the differential equation AU = 0, 
while the boundary correction appears to have little influence we shall use the multi- 
grid method in the following sense. On the original fine grid the problem (2.1) is 
solved as a free boundary problem.The residual equations then are solved on coarser 
grids as a fixed boundary problem on Dk(t,), where Dk(t,) is the domain ob~~~~~d 
from the last fine grid calculation. Specifically, let {u:, s:} be the solution of (3.2) 
obtained with w = 1 in the kth iterations. u: satisfies 

We wish to improve {u$] with the multi-grid method on he domain defined by the 
computed boundary points {s:}. If we define the residual z: = ui - U: and arbitrarily 
set zr(s:) = 0 then {z:} is an approximate solution to be fixed boundary problem: 

AZ = S(r, 13) on Dk(t,), 

z=o on r=ro, 

z=o on =3:&J, 

where Dk(t,) is a smooth approximation to D(t,) detined by the boundary points 
is;}, and where S(r, 0) for 19 = Bi and r E (ro, sf) has the form 

SCr, ei) = - & (u:, , - 24:;:). 

This boundary value problem again is solved with the method of lines on a new grid 
with half as many lines and mesh points per line. The same invariant imbeddin~ 
equations can be used except that the source terms must be updated. Once {zfl has 
been found on this new grid its values at the remaining mesh points of the old grid 
are computed by linear interpolation and 

ui = u: + z:, s; 
serve as new data for the (k + 1)st Gauss-Seidel iteration on the original free 
boundary problem. 

The actual computation preceeds as follows. Starting with the solution from the 
proceeding time level as initial guess we compute {up, $jp k = I, 2.,..* until 
convergence slows down. If we define ek = maxi 1~; - z&-i / then convergency is 
considered slow whenever ek/ek-’ > 0.65. We then compute the residual problem on 
the coarser grid until maxi 1~:s’ - z:,‘-~ / < 1O-4, where {zf*‘] are the Gauss-Sei 
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iterates approximating {zr}. The new approximation of ui is found and the iteration 
on the original grid is resumed. A cycling between the original and the residual 
problem results until ek < lob6 and maxi 1s; - $‘I < lO-‘j, when the iteration is 
considered to have converged. 

The solution of the residual equation for z is itself accelerated in the usual way by 
computing its residual on a yet coarser grid. Altogether, up to four grids, the finest 
with 24 lines and 200 points per line, are used in our multi-grid code. 

While we do not have any theoretical justification for the success of the multi-grid 
method in this free boundary setting the results obtained so far seem to justify this 
approach and make further research into this method desirable. 

4. NUMERICAL RESULTS 

The case of a circular free boundary concentric with the well boundary r = r,, is a 
convenient test problem for debugging the code and for obtaining some feel for the 
Hele-Shaw suction problem. (Note that even if only one ray is chosen the problem is 
still solved iteratively because (3.2) (for w = 1) reduces to 

k = 1, 2,.... 

(Of course, if in fact a one dimensional problem is to be solved then the linear and 
the source terms can be eliminated and no iteration is necessary.) We have collected 
some representative results both for the suction (t > 0) and injection (t < 0) problem. 
We also provide a comparison with the results obtained when the free surface is 
explicitly predicted with the formula 

Si,n+ 1 = Si,n -At ~l,&i,n> (L =K= 1) 

and the resulting fixed boundary problem is solved with the above invariant 
imbedding method. A time-implicit method appears to be essential for the suction but 
not for the injection problem. However, in a line SOR method the only additional 
cost of an implicit over an explicit method lies in the evaluation of the function #f(r) 
in (3.3), which is a small price to pay for the improved performance. The poor 
performance of the explicit method raises doubt that the predictor corrector methods 
common for Stefan problems will s-ucceed for the suction problem since even for the 
Stefan problem convergence may have to be forced through underrelaxation [ 11. All 
further results were obtained with the implicit Crank-Nicolson method. 

Let us now turn to the two dimensional suction problem. As the preliminary 
experiment in [8] showed, the method of lines will produce a cusping free boundary 
when non-concentric circles are the initial boundaries. This is qualitatively the correct 
solution. Tables II and III below indicate quantitatively how well the free boundary 
(2.11) can be reproduced. In Table II only the closest point r = s(rc, t) is shown 
which at r, M 1.190557 becomes the vertex of the cusp. Table III is included to 
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TABLE I 

Radial Hele-Shaw Suction and Injection Problem 

Relative error (%) in the free 

tn -In-l 
boundary position 

M tn At s(L) __ 
Time-implicit Time-explicit 

method method 

0 0 0.5 0 0 
1 0.075 30 0.2452 -0.02 f2.51 
2 0.090 30 0.1121 -0.20 +17.6 
3 0.094 20 0.0644 -0.85 +54.8 
4 0.042 18 0.0408 -2.92 +114.4 

-1 -0.1 20 0.6894 -0.003 +0.23 
-2 -0.2 20 0.8294 -0.006 +0.23 
-3 -0.3 20 0.945 1 0.007 10.22 

Note. s(O) = R = 0.5; Ar = 0.0025 for the suction problem; Ar = 0.0025 on 
[O.Ol, 0.11, Ar= 0.005 on (0.1,0.2], Ar=0.8/140 on [0.2,-l] for the injection 
problem. The percent relative error is defined as 100 . Is,,, - s(l,)]/s(t,), where s(t) 
is the analytic solution. Note: [t” - tn-i]/df indicates the number of time steps 
between the display times t, _ , and t,. 

TABLE II 

Two Dimensional Hele-Shaw Flow with Suction 

Run n Maximum relative error in (%) 

I 0 -1.3 - 1.0170 - - 
1 -1.25 5 0.9142 0.9147 +0.3 
2 -1.12 10 0.7426 0.7803 $5.1 

II 0 -1.3 - 1.0170 - - 
1 -1.25 5 0.9142 0.9147 +0.3 

2 -i.2 10 or 20 0.7426 0.1661 +3.2 

III 0 -2.0 - 1.7076 - - 
1 -1.3 14 1.0170 1.0149 -0.2 
2 -1.25 5 0.9142 0.9144 +1.1 
3 -1.2 10 0.7426 0.7980 +9.1 

IV 0 -1.2 - 0.7926 - 
1 -1.199 1 0.7364 0.7384 10.3 
2 -1.198 1 0.7299 0.7340 fO.6 
3 -1.197 I 0.7230 0.7297 10.9 
4 -1.196 1 0.7154 no convergence of the SOR iteration 

-. 

581/44/2-4 
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TABLE III 

Analytic and Computed Free Boundaries for Hele-Shaw Flow with Suction at r = -1.2 

Ray 
Analytic solution 

at r= -1.2 Run I Run II Run III 

1 
9 

10 
11 
11 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1.8937 1.8936 1.8936 1.8934 1.8899 
1.8916 1.8915 1.8915 1.8911 1.8878 
1.8856 1.8854 1.8854 1.8851 1.8817 
1.8755 1.8754 1.8754 1.8750 1.8716 
1.8614 1.8612 1.8612 1.8610 1.8575 
1.8433 1.843 1 1.8431 1.8427 1.8393 
1.8212 1.8210 1.8210 1.8206 1.8172 
1.7952 1.7950 1.7949 1.7945 1.7911 
1.1652 1.7699 1.7649 1.7644 1.7610 
1.7313 1.7310 1.7310 1.7305 1.7270 
1.6935 1.6932 1.6932 1.6927 1.6891 
1.6519 1.6515 1.6515 1.6507 1.6473 
1.6064 1.6060 1.6060 1.6054 1.6016 
1.5570 1.5566 1.5566 1.5559 1.5521 
1.5039 1.5034 1.5034 1.5025 1.4987 
1.4469 1.4463 1.4463 1.4454 1.4413 
1.3860 1.3854 1.3853 1.3849 1.3800 
1.3211 1.3204 1.3203 1.3181 1.3146 
1.2520 1.2513 1.2513 1.2552 1.2450 
1.5786 1.1777 1.1769 1.1679 1.1706 
1.1002 1.1001 1.1014 1.1219 1.0911 
1.0163 1.0134 1 SO096 0.9942 1.0053 

0.9254 0.9439 0.9411 1.0163 0.9108 
0.8257 0.8063 0.8209 0.7569 0.8021 
0.7426 0.7803 0.7661 0.7980 0.6303 

Analytic solution 
at rc 

Note. r,, = 0.3; Ar = 0.0025 on 10.3, 0.41, Ar = 0.01 on [0.4, 21; dQ = n/24. 
Ray #i is given by 8= Bi = in/24. The maximum relative error is 

maxi{ h - s(ej, tn)l/S(ei, tfl)] . loo. 

encourage a comparison of the exact solution with numerical results for this 
nontrivial model problem. For the computation the line y = 0 is used as a symmetry 
boundary. 

The values of s(Bi, t,J are obtained by transferring 100 evenly spaced boundary 
points on the upper half circle in the w plane onto the z plane and by interpolating 
linearly in the z plane to obtain the free boundary on the specified rays 8 = ei, 
i = O,..., 24. 

The results of run 1 are obtained with a second order approximation of uee. They 
show a maximum relative error of less than one percent until the last five time steps 
when the error increases to 5.1%. Figure 1 shows the exact and computed free boun- 
daries of run I at r = -1.3, r = -1.25, and r = -1.2. The oscillation of the computed 
free boundary about the true position at z = -1.2 is a typical indication in these 
experiments that the solution is beginning to break down. This behavior is especially 
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pronounced in the long time run III. The oscillations appear to be due to the approx- 
imation of u,, on a domain which is developing a reentrant corner. The maximum 
error is somewhat reduced and the oscillations virtually disappear when run F is 
repeated with a fourth order approximation of uBB as shown by the results of run II, 
Moreover, a doubling of the number of time steps over the initial interval 
L-1.25, -1.201 had practically no effect on the computed solution of II. Run IV in 
Table II shows the performance of the method with a second order approximation to 
uBB when the initial free boundary is a well-developed limacon. As the boundary 
speed increases the method of lines can no longer cope even if the computation is 
restarted with a smaller time step. 

Our results show that it is indeed possible to track the free boundary in a 
Wele-Shaw suction problem with the method of lines. In part~c~lar~ run III shows 
that an initially convex domain at r = -2 can be followed well into the stage where 
convexity is lost (say r = -1.25) with reasonably good accuracy, especially when. a 
fourth order method of lines approximation can be used. These results are 
particularly encouraging when one considers that the time steps of Table 1”s 
correspond to some fairly long real times in some applications. For example, for oil 
flow in a typical reservoir the constant in (2.ld) after ~ondimensionaliz~~g can be 
shown to be 

where y is the oil viscosity, k the reservoir permeability, and where uR and are a 
reference pressure drop’ and a reference reservoir dimension. If we choose y = 2 cp, 
ic = 508 md, R = 100 m and uR = 2 atm then the results of Table II apply rough 
a reservoir with an intial drainage radius between 100 and 200 m and a pressure 
of about 1.4 atm between the well and the free boundary. Since L = 1 in t 
compntatio~ the real time r and the computer time t are linked by 

PRZ z=-t=2x 10% 
ku, 

A time step of 0.01 in run I corresponds to a real time step of about 23 days which is 
quite long. 

The dominant problem of slow convergence and long run times, however, has not 
been overcome. For 24 rays with 200 mesh points the computation of the initial 
condition {Q] alone takes about 60 CPU seconds on the Cyber 174 with the mutli- 
grid code; the computation at any future time level takes about 30 CPU seconds. 

The improvement in the rate of convergence due to the m~lt~grid algorithm is 
about four-fold when compared to a straight Gauss-Side1 iteration; however, the 
improvement is much more modest when compared with an SOR iteration which 
utilizes a near optimum relaxation parameter. For example, run with the multi-grid 
code restricted to one level but with a near optimum relaxation factor of w = 4.62 
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required 725 CPU seconds. The same run with four multi-grid levels (the coarsest 
with three rays and 25 mesh points per ray) took 582 CPU seconds. Since this a new 
multi-grid code in an unfamiliar setting, further improvement is expected as we gain 
experience with it. It is doubtful, however, that it will be economically possible to 
have sufficiently line time and space discretizations in order to track the free 
boundary completely until the critical time with even the best implementation of the 
method of lines approximation. Thus Hele-Shaw flow with suction remains a 
challenge. 
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